If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-30x+6=0
a = 6; b = -30; c = +6;
Δ = b2-4ac
Δ = -302-4·6·6
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{21}}{2*6}=\frac{30-6\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{21}}{2*6}=\frac{30+6\sqrt{21}}{12} $
| 5x+4=3X4x | | y^2+256y+1088=0 | | 8x+3x-9x-5=9 | | 8x+3x9x-5=9 | | F(x)=x-10/7x-11 | | (w-2)^2=63 | | 3x^2–6x=21 | | 3x2–6x=21 | | Y=-7/2x+21 | | 6x+7÷3x+5=-5 | | 3/4/p=18 | | -4n+5n=-82 | | 5-11p=9 | | 3y3+2y2-5y+6=0 | | 6s-5s•3=1/12-1/6 | | 3+6s-5s=1/12-1/6 | | -9m+-10m=-95 | | 5=(x+2)+3(2x-18) | | 3x+4/9x+2=2/3 | | 5=(x+20)+3(2x-18) | | 105=700*0.05*t | | |7x-8|+2=13 | | X+7/14=1-(3/7x) | | -3m+27=21+42m | | −3/7(m−9)=3+6m | | 42y²-13y=42 | | 2(x*x^2)-15x^2+150x-500=0 | | 8=x+4/6+x+4/2 | | 17=−4x−11 | | x+1/x=7/4 | | 32^x=2^15 | | 3x^2-105x-360=0 |